If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+20x-2000=0
a = 2; b = 20; c = -2000;
Δ = b2-4ac
Δ = 202-4·2·(-2000)
Δ = 16400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16400}=\sqrt{400*41}=\sqrt{400}*\sqrt{41}=20\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20\sqrt{41}}{2*2}=\frac{-20-20\sqrt{41}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20\sqrt{41}}{2*2}=\frac{-20+20\sqrt{41}}{4} $
| −4∣−7v∣=−28 | | 3*a=48 | | 3.75x-8=-3 | | 74x-6=49 | | 6×2x-3=24 | | 2x+11=5x+7 | | 65x+5.50=123 | | 2x+8=18=4x | | 194=35-v | | n-17=30 | | -2.5x=-24.5 | | -18g+10g+16g-3=-19 | | 2/3(4x-1)=-32 | | 38x-1=360 | | 0.25x=86.25 | | 5x2-21+4=0 | | -6.7+x=4.6 | | 2x+5=-4x*11 | | 8/6=2/p | | p−8=2p−58=p+15 | | 4x+3-2x=10+x | | y-52=10 | | 4(2+6m)= | | 5(3-12x)=6(5x+3) | | -3(4-2x)=-12+6x | | -3(4-2x)=-12-2x | | -3(4-2x)=-12+2x | | x=56÷8 | | 17r-31r=20 | | 3x+6+x+14=180 | | 3x2+2x15=36 | | 6(3x-7)=3 |